
OI, Test Sequence Manager ®

for the, 6TL SmartFixture.

MARCOM20240221-OI rev01

Table of Contents

1. Introduc on ……………………………………………………………… 3

2. 6TL-02 SmartFixture ….....………………………………………….. 4

3. TSM, Test Sequence Manager …………………………………… 6

4. How to build a Test Applica on ………………………………… 8

STEP 1, Setup your development environment ……….... 8

STEP 2, Review the Ebike example ……………..…………….. 9

STEP 3, Analyze the Ebike test sequence flowchart ….. 11

STEP 4, Build-It-Yourself …………………………………………… 13

2

1. Introduc on
Welcome to the wonderful world of low-cost “automated” hardware test development.

The purpose for this document is to acquaint the User with the many a ributes of the Test Se-
quence Manager (TSM), and provide a guide to implement an actual Test Applica on which
runs on the 6TL-02 SmartFixture Test System. The next sec on provides a general descrip on
of the 6TL-02 SmartFixture Test System, and beyond that we provide a deeper dive into the
opera- on of the TSM.

3

2. 6TL-02 SmartFixture
As the diagram below illustrates, the 6TL-02 SmartFixture is a highly integrated PCB

Func onal Test System. The system was designed to significantly reduce the high-cost of auto-
mated test, and (in doing so) allow “automa c test” to be cost-jus fied for PCB’s that could not
previously. Star ng with a robust bed-of-nails test pla orm, the system will support a wide
variety of PCB’s (regardless of the size or complexity). Next, is the Sure Clamp (over-clamp as-
sembly), which is a patented design that prevents PCB wobble or flap. The Probe Plate (the
assembly that houses the pogo pins), features a unique capability that allows it to be removed
and replaced (which provides a quick change over to accommodate a different DUT). The em-
bedded instrumenta on is provided by Overton Instruments, and includes our extensive line of
test instrument modules. The Operator support func on is provided by a simple I/O solu on
(located on the front panel). Finally, the complete test sequence process can be driven by a
low-cost selec on of embedded IntelPi computers (the UP-MATE I & II).

4

2. 6TL-02 SmartFixture - cont.,
As the diagram below illustrates, the 6TL-02 SmartFixture can be quickly and easily

transformed into what we call a “Smart Test Fixture”. The goal of the configura on is to carry
out a Pre Power Test (iden fy “short” condi ons), a DUT Power Test (power the DUT and check
“key” voltages and current at specific test points), and finally upload the DUT Produc on Code
(use the flash programming to upload the code and verify the checksum at the end).

5

3. TSM, Test Sequence Manager
The TSM (Test Sequence Manager), is a “free” (open source) Test Execu ve for the

6TL-02 SmartFixture Test System. The TSM is wri en in Python and includes all of the so -
ware components shown in the block diagram below. The TSM can run on either a Windows
or Linux pla orm, or remotely (via external PC), or embedded (with the UP-MATE computers).

The TSM includes a unique Test Sequence Engine which is a special so ware rou ne
that manages the complete Func onal Test Process - by controlling the test opera on, config-
uring the test equipment, acquiring a test measurement, determining Pass or Fail status, and
logging the test results.

The TSM also includes a simple Graphical User Interface (GUI), which is highlighted on
page 7, and is divided into 6 separate sec ons (A thru F). The DUT Info sec on, provides DUT
related informa on (that is acquired from the UIM-MATE module). The TEST Sequence Moni-
tor, provides per nent informa on related to the current Test Step. The TEST Control sec on
allows the Operator to START (resume), or STOP (abort) the test process. The TEST Fixture sec-

on, provides a collec on of LED’s that indicate Fixture & DUT PWR status. The TEST Instruc-
on sec on is used to display specific Operator instruc ons. The POPUP Alerts, are a collec-
on of individual popup messages that are used to convey important alerts.

6

3. TSM, Test Sequence Manager - cont.,

A

B

C

E

D

A DUT INFO

DUT NAME Iden fies the DUT by the part name

PART # Indicates the DUT generic part number

SERIAL # Indicates the DUT assigned serial number

B TEST SEQUENCE MONITOR

TEST NAME Iden fies the test name

TEST # Indicates the test number

SUB NAME Iden fies the sub-test name

LOW LIMIT Indicates the lower P/F limit

HIGH LIMIT Indicates the highest P/F limit

EXACT # Indicates the exact value to measure

SUB # Indicates the sub-test number

C TEST CONTROL/STATUS

START Pushbu on for START or resume

RUN Yellow LED, to indicate test is underway

PASS Green LED, to indicate test PASS

FAIL RED LED, to indicate test FAIL

STOP Pushbu on for STOP or abort

D DUT FIXTURE/STATUS

DUT PWR Green LED, to indicate DUT power is ON

FIXTURE
READY

Green LED, to indicate fixture over-clamp
is engaged

DUT
PRESENT

Green LED, to indicate the DUT is properly
installed in the test fixture

E TEST INSTRUCTIONS/STATUS

Display Operator instruc ons and general
status informa on

F POP UP MESSAGES/EVENTS

Display a series or collec on of high-level
pop up alerts and messages, as needed.

7

TSM GUI, Graphical User Interface

4. How to build a Test Applica on
STEP 1, Setup your development environment

4.1.1 Download TSM_beta_xxx / Distribution.zip;
 h ps://www.testprobes.nl/downloads/oi/Distribution.zip

4.1.2 Open and copy the TSM_beta_xxx folder to your PC

4.1.3 Download Python, h ps://www.python.org/downloads/

4.1.4 Download Visual Studio (op onal), h ps://
code.visualstudio.com download

4.1.5 Configure Visual Studio to run Python code, h ps://

www.datacamp.com/tutorial/se ng-up-vscode-python

4.1.6 Download VCP to run Overton Instruments, h ps://
 www.silabs.com/developers/usb-to-uart-bridge-vcp-drivers?
 tab=downloads

4.1.7 Download Pyserial, pypi.org/project/pyserial/

4.1.8 Download NI VISA, h ps://www.ni.com/en/support/
 downloads/drivers/download.ni-visa.html#521671

4.1.9 Download Py Simple GUI, h ps://pypi.org/project/
 PySimpleGUI/

8

4. How to build a Test Applica on - cont.,
STEP 2, Review the Ebike example

The best way to understand how a Test Applica on is built, you should first review and
examine a working example. On page 10, we have included a block diagram for a test system
that is designed to validate a Motor Control Unit (MCU), which is part of an Ebike (electronic
shooter). There are 2 items that are cri cal to the development of the Test Sequence Manag-
er, and they are the Test Sequence Map and the TestLimits file. In the Ebike example, the Test
Sequence Manager is programmed to run 4 separate tests, which are highlighted in both the
Test Sequence Map and the TestLimits file.

Test Sequence Map

The Test Sequence Map is a document that contains a standard spreadsheet format
and is unique to every Test Applica on. The objec ve is to provide a step-by-step list of all the
relevant tests and sub-tests that comprise the Test Applica on. In addi on, it a empts to
itemize all of the interac ons between the test instruments and the test process. Ul mately,
the Test Sequence Map is designed to provide a clear “road map” for the Python programmer
to update and modify the Test Sequence Manager (for a given Test Applica on). It should also
be noted that the original informa on for the Test Sequence Map emanates from the Test
Specifica on or Manufacturing Test Procedure for the PCB.

To view the Test Sequence Map for the Ebike example, go to the Applica on Develop-
ment folder and click on the Examples folder, and then click the Ebike folder. Finally, use a text
editor to open the Ebike Test Sequence Map file.

TestLimits

The second important item is the TestLimits file. The TestLimits file, holds a specific
batch of “,” delimited data values that are used to feed the Test Sequence Manager. During
program execu on, the Test Sequence Manager reads the TestLimits file line-by- line, and up-
dates the GUI Display accordingly. In addi on, the TestLimits file contains the actual Pass/Fails
limits for each test.

To view the TestLimits file for the Ebike example, go to the Applica on Development
folder and click on the Examples folder, and then click Ebike folder. Finally, use a text editor to
open the Ebike TestLimits file.

9

4. How to build a Test Applica on - cont.,
STEP 2, Review the Ebike example

The Ebike Func onal Test System shown below is driven by the intelPi (embedded con-
troller), which also runs the Test Sequence Manager. The goal of the test is to perform a quick
Go/NoGo test process, and end the test by uploading the Produc on Code. On pages 11 & 12,
is a flowchart that highlights the overall test process.

To view the Test Sequence Manager (Python code), for the Ebike example, go to the
Applica on Development folder and click on the Examples folder, and then click the Ebike fold-
er. Finally, select the TSM_main_Ebike, and Visual Studio should launch and load the Ebike/
Python program.

10

4. How to build a Test Applica on - cont.,
STEP 3, Analyze the Ebike test sequence flowchart

11

4. How to build a Test Applica on - cont.,
STEP 3, Analyze the Ebike test sequence flowchart

12

4. How to build a Test Applica on - cont.,
STEP 4, Build-It-Yourself

To jump-start and accelerate your effort to build a Test Applica on, we have
provided a TSM template file (called the TSM_main_template), which provides a basic
framework for building a custom Func onal Test process.

It is strongly recommended that you prepare a Test Sequence Map for your
DUT. The Test Sequence Map, can be built from an exis ng Manufacturing Test Proce-

 dure. You can also reference the Ebike example for addi onal direc on. Remember,
the goal is to iden fy each-and-every test step in the test process, and determine what
equipment is needed and how it should be configured.

From the Test Sequence Map, you can generate the TestLimits.txt file, which
consolidates the names and tles for the each test and sub-test, and includes cri cal
pass/fail limit values. The TSM reads the TestLimits file, and processes the data accord-

 ingly.

When the Test Applica on is launched, the first thing it does is ini alize the OI
test instruments and external test equipment. So, in your program you must include
the equipment you require and add the the appropriate instrument drivers. Follow the
Test Sequence Map, it will include that informa on in the “Ini ate” sec on.

Next, the program should iden fy the DUT by querying the UIM-MATE module
to receive the DUT name and part number. Then, (assuming your applica on requires
it), the program will prompt the Operator to scan the DUT serial number. Next, the
program should prompt the Operator to install the DUT in the test fixture, close the
over clamp, and press the START bu on. To verify the test fixture is ready, the pro-

 gram will then query the UIM-MATE to receive DUT_present & Fixture_ready status. If
the status is OK, then the program can proceed to run the test sequence.

When crea ng a test sequence, one must understand that at the core of each
test opera on is a basic 4-step “loop” construct. The 4 steps include, 1) update the
GUI, load the Test Sequence Monitor, 2) configure the OI instrument modules or exter-

 nal test equipment to sa sfy the current test step, 3) trigger the test instrument to ac-
 quire a measurement, and 4) analyze the measurement to determine pass/fail and log

the test results. Keep in mind, this same 4-step loop, is repeated for each sub-test
(that is defined in the Test Sequence Map and the TestLimits file). On page 14, we pro-

 vided a code snippet that illustrates a typical test opera on.

To support the overall test flow, the Test Sequence Manager also includes a
number of important housekeeping u li es as well. Such as the mechanism to read &
process the TestLimits file, the mechanism to determine Pass/Fail and data logging, the
mechanism to support the user panel and the Operator prompts, and the mechanism
to support the START/STOP control bu ons.

13

4. How to build a Test Applica on - cont.,
STEP 4, Build-It-Yourself (sample code)

 def pre_power_test(self, subTestNum, retryCount):
 # initialize
 if self.owon.get_function() != 'RES':

 self.owon.change_function("RES")

 channel = subTestNum[3].strip()
 lowVal = self.parse_string_to_int(subTestNum[4])
 hiVal = self.parse_string_to_int(subTestNum[6])
 lowValstr = subTestNum[4].strip()
 hiValstr = subTestNum[6].strip()
 while retryCount >= 0: # loop retry count or test pass

 channel = "0" + channel if len(channel) == 1 else channel # add 0 before single digits
 self.mux_mate.select_relay(channel, "1")
 print(self.mux_mate.get_relay_status())
 exactVal = float(self.owon.get_measurement())
 result = ""
 retryCount = retryCount - 1
 if exactVal < lowVal or exactVal > hiVal:

 if retryCount == -1:
 result = "F"
 self.fill_monitor(subTestNum, result)
 self.save_test_results(lowValstr, hiValstr, self.float_to_sn(exactVal), result)
 self.fail_dut()
 break

 else:
 continue

 else:
 result = "P"
 self.fill_monitor(subTestNum, result)
 self.save_test_results(lowValstr, hiValstr, self.float_to_sn(exactVal), result)
 self.pass_dut()
 break

14

